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Dimensionality Reduction
¢ Compress / reduce dimensionality:

l Matrix of 106 rows; 103 columns; no updates
l Random access to any cell(s); small error: OK

3/19/23

The above matrix is really “2-dimensional.” All rows can 
be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]
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Dimensionality Reduction

¢ Assumption: Data lies on or near a low 
d-dimensional subspace

¢ Axes of this subspace are effective representation of 
the data

3/19/23
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Why Reduce Dimensions?

Why reduce dimensions?

¢ Discover hidden correlations between different 
attributes of an object
l Words that occur commonly together for documents of the same 

topic

¢ Remove redundant and noisy features
l Not all words are useful

¢ Interpretation and visualization

¢ Easier storage and processing of the data

3/19/23
5
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An Initial Example
M = U V : a Users-to-Movies Rating matrix

3/19/23

• Consider each of the 6 users as a data point (a row in M) characterized by 
his/her rating on the 5 movies, i.e. each User is a 5-dimensional data-point. 

• IF we can decompose the 6x5 matrix (M) into the product of U and V, i.e. the 
(6x2) and (2x5) matrices, we can represent each of the 6 users, as well as the 
5 movies, as data-points on a new 2-dimensional space.
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Coordinates of User 3 in 
the new 2-dimensional space

This vector in the old 5-dim. space gives
the direction corresponding to the 1st axis 
of the new 2-dim space

[2 0 3 1 4]
= u31 * [v11 v12 v13 v14 v15] + u32 *  [v21 v22 v23 v24 v25]
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An Initial Example
M = U V : a Users-to-Movies Rating matrix
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• Consider each of the 6 users as a data point (a row in M) characterized by 
his/her rating on the 5 movies, i.e. each User is a 5-dimensional data-point. 

• IF we can decompose the 6x5 matrix (M) into the product of U and V, i.e. the 
(6x2) and (2x5) matrices, we can represent each of the 6 users, as well as the 
5 movies, as data-points on a new 2-dimensional space.
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[5 3 2 2 4 1]T
= v11 * [u11 u21 u31 u41 u51 u61]T + v21 * [u12 u22 u32 u42 u42 u62]T
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An Initial Example
M = U V : a Users-to-Movies Rating matrix
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• Consider each of the 6 users as a data point (a row in M) characterized by 
his/her rating on the 5 movies, i.e. each User is a 5-dimensional data-point. 

• IF we can decompose the 6x5 matrix (M) into the product of U and V, i.e. the 
(6x2) and (2x5) matrices, we can represent each of the 6 users, as well as the 
5 movies, as data-points on a new 2-dimensional space.
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the new 2-dimensional space

The rating of User 3 on Movie 1 can be computed as 
the similarity (recall: projection or dot-product) between 
User 3 and Movie1 in the new 2-dimensional space
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An Initial Example
M = U V : a Users-to-Movies Rating matrix
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• Consider each of the 6 users as a data point (a row in M) characterized by 
his/her rating on the 5 movies, i.e. each User is a 5-dimensional data-point. 

• IF we can decompose the 6x5 matrix (M) into the product of U and V, i.e. the 
(6x2) and (2x5) matrices, we can represent each of the 6 users, as well as the 
5 movies, as data-points on a new 2-dimensional space.
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SVD - Definition

A[m x n] = U[m x r] Σ [ r x r] (V[n x r])T

¢ A: Input data matrix
l m x n matrix (e.g., m documents, n attributes or features, e.g. terms)

¢ U: Left singular vectors 
l m x r , column orthonormal matrix, (m documents, r hidden/latent 

concepts)

¢ Σ: Singular values
l r x r diagonal matrix (strength of each hidden/latent ‘concept’) 

(r : rank of the matrix A)
¢ V: Right singular vectors

l n x r, column orthonormal matrix 
(n attributes or features, e.g. terms,  and  r hidden/latent concepts)
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SVD
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SVD - Properties
It is always possible to decompose a real 

matrix A into A = U Σ VT , where

¢ U, Σ, V: unique

¢ U, V: column orthonormal
l UT U = I; VT V = I (I: identity matrix)
l (Columns are orthogonal unit vectors)

¢ Σ: diagonal
l Entries (singular values) are positive, 

and sorted in decreasing order (σ1 ≥ σ2 ≥ ... ≥ 0)

3/19/23
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SVD – Example: Users-to-Movies

¢ A = U Σ VT - example: Users to Movies

3/19/23
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who is characterized by the ratings he/she gave 
to a set of Movies
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SVD – Example: Users-to-Movies

¢ A = U Σ VT - example: Users to Movies

3/19/23
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SVD – Example: Users-to-Movies

¢ A = U Σ VT - example: Users to Movies

3/19/23 16
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SVD – Example: Users-to-Movies

¢ A = U Σ VT - example:

Romance-concept

U is “user-to-concept” 
similarity matrix

SciFi-concept
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SVD – Example: Users-to-Movies

¢ A = U Σ VT - example:

3/19/23
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SVD – Example: Users-to-Movies

¢ A = U Σ VT - example:

3/19/23
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SVD - Interpretation #1

‘movies’, ‘users’ and ‘concepts’:
¢ U: user-to-concept similarity matrix

¢ V: movie-to-concept similarity matrix

¢Σ: its diagonal elements: 
‘strength’ of each concept
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SVD - Interpretation #2 – Choose a new axis to 
Minimize total “project errors”

¢ A = U Σ VT - example:
l V: “movie-to-concept” matrix
l U: “user-to-concept” matrix

3/19/23
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SVD - interpretation #2

¢ SVD gives ‘best’ axis 
to project on:
l ‘best’ = min sum of 

squares of projection 
errors

¢ In other words, 
minimum 
reconstruction error

3/19/23
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Each user (a data point), e.g. in a 
2-D space, is characterized by the 
ratings he/she gave to a set of 2 
Movies

v1
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SVD - interpretation #2 (more later)

¢ SVD gives ‘best’ axis to project on:

l ‘best’ = min sum of squares of projection errors
¢ In other words, minimum reconstruction error

3/19/23



DIM RED   24

SVD - Interpretation #2 (cont’d)
¢ A = U Σ VT - example:

l V: “movie-to-concept” matrix
l U: “user-to-concept” matrix

3/19/23
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SVD - Interpretation #2 (cont’d)

3/19/23
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A = U Σ VT 

=> A V = U Σ VT V = U Σ
¢ U Σ : Gives the coordinates 

of the points in the projection axis
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SVD - Interpretation #2 (cont’d)
A = U Σ VT 

=> A V = U Σ VT V = U Σ
¢ U Σ : Gives the coordinates 

of the points in the 
projection axis

3/19/23
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SVD - interpretation #2 (more later)

¢ SVD gives ‘best’ axis to project on:

l ‘best’ = min sum of squares of projection errors
¢ i.e. Choose the axis v to minimize reconstruction error

== Choose the axis v to maximize sum of square of    
projection length

3/19/23
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SVD - Interpretation #2 (cont’d)

3/19/23
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Maximize total spread of all data 

points along the axis defined by v1
=> minimize total projection errors
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of the points in the projection axis
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SVD - Interpretation #2
More details
¢ Q: How exactly is dim. reduction done?
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Recall: SVD
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Recall: SVD
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SVD - Interpretation #2
More details
¢ Q: How exactly is Dimension Reduction done?
¢ A: Set smallest singular values to zero

3/19/23
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SVD - Interpretation #2
More details
¢ Q: How exactly is dim. reduction done?
¢ A: Set smallest singular values to zero

3/19/23
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SVD - Interpretation #2
More details
¢ Q: How exactly is dim. reduction done?
¢ A: Set smallest singular values to zero

3/19/23

x x

1   1   1 0   0
3   3   3 0   0
4   4   4 0   0
5   5   5 0   0
0   2 0   4   4
0   0   0   5   5
0   1 0   2   2

0.13 0.02  -0.01
0.41 0.07  -0.03
0.55 0.09  -0.04
0.68 0.11  -0.05
0.15  -0.59 0.65
0.07  -0.73 -0.67
0.07  -0.29 0.32

12.4 0     0
0       9.5 0
0       0     1.3

0.56   0.59  0.56 0.09    0.09
0.12  -0.02  0.12  -0.69  -0.69
0.40  -0.80 0.40   0.09    0.09

≈



DIM RED   35

SVD - Interpretation #2
More details
¢ Q: How exactly is dim. reduction done?
¢ A: Set smallest singular values to zero

3/19/23

≈ x x

1   1   1 0   0
3   3   3 0   0
4   4   4 0   0
5   5   5 0   0
0   2 0   4   4
0   0   0   5   5
0   1 0   2   2

0.13 0.02
0.41 0.07
0.55 0.09
0.68 0.11
0.15  -0.59
0.07  -0.73
0.07  -0.29

12.4 0     
0       9.5  

0.56   0.59  0.56 0.09    0.09
0.12  -0.02  0.12  -0.69  -0.69
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SVD - Interpretation #2
More details
¢ Q: How exactly is dim. reduction done?
¢ A: Set smallest singular values to zero

3/19/23

≈

1   1   1 0   0
3   3   3 0   0
4   4   4 0   0
5   5   5 0   0
0   2 0   4   4
0   0   0   5   5
0   1 0   2   2

0.92  0.95   0.92   0.01   0.01
2.91  3.01   2.91 -0.01  -0.01
3.90  4.04   3.90 0.01   0.01
4.82  5.00   4.82 0.03   0.03
0.70  0.53 0.70  4.11   4.11
-0.69  1.34  -0.69 4.78   4.78
0.32  0.23 0.32   2.01   2.01

Frobenius norm:
ǁMǁF= √Σij Mij

2 ǁA-BǁF= √ Σij (Aij-Bij)2
is “small”
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SVD – Best Low Rank Approx.

A U
Sigma

VT=

B U
Sigma

VT
=

B is best approximation of  A
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SVD – Best Low Rank Approx.

¢ Theorem: Let A = U Σ VT (σ1≥σ2≥…, rank(A)=r)
then B = U S VT

l S = diagonal nxn matrix where si=σi (i=1…k) else si=0

is a best rank-k approximation to A:
l B is a solution to minB ǁA-BǁF where rank(B)=k

3/19/23

𝜎!!
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Proof of Fact #1
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SVD – Best Low Rank Approx.

3/19/23

¢ A = U Σ VT , B = U S VT (σ1≥σ2≥… ≥ 0, rank(A)=r)
l S = diagonal nxn matrix where si=σi (i=1…k) else si=0

then B is solution to  minB ǁA-BǁF , rank(B)=k
¡ Why?

¢ We want to choose si to minimize 
¢ Solution is to set si=σi (i=1…k) and other si=0
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We used: U Σ VT - U S VT = U (Σ - S) VT 
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SVD – Best Low Rank Approx.

3/19/23

Because Frobenius norm 
is unitarily-invariant ; 
(see next slide for details)

Source: https://www.cs.yale.edu/homes/el327/datamining2013aFiles/07_singular_value_decomposition.pdf
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What is a Unitarily Invariant Norm ?

3/19/23

*

Source: https://nhigham.com/2021/02/02/what-is-a-unitarily-invariant-norm/
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Unitarily Invariant Norm and connection to SVD

3/19/23 Source: https://nhigham.com/2021/02/02/what-is-a-unitarily-invariant-norm/
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End of Backup Slides
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SVD - Interpretation #2 (cont’d)

Equivalent:
‘spectral decomposition’ of the matrix:

= x xu1 u2

σ1

σ2

v1

v2

1   1   1 0   0
3   3   3 0   0
4   4   4 0   0
5   5   5 0   0
0   2 0   4   4
0   0   0   5   5
0   1 0   2   2



DIM RED   49

SVD - Interpretation #2
Equivalent:
‘spectral decomposition’ of the matrix

3/19/23

= u1σ1 vT
1 u2σ2 vT

2+ +...

m

n

m x 1 1 x n

k  terms

Assume: σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ 0

Why is setting small σi to 0 the right 
thing to do?
Vectors ui and vi are unit length, so σi
scales them.
So, zeroing small σi introduces less error.

1   1   1 0   0
3   3   3 0   0
4   4   4 0   0
5   5   5 0   0
0   2 0   4   4
0   0   0   5   5
0   1 0   2   2
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SVD - Interpretation #2

Q: How many σs to keep?
A: Rule-of-a thumb: 

keep 80-90% of ‘energy’ (=Σσi
2)

= u1σ1 vT
1 u2σ2 vT

2+ +...
m

n

Assume: σ1 ≥ σ2 ≥ σ3 ≥ ...

1   1   1 0   0
3   3   3 0   0
4   4   4 0   0
5   5   5 0   0
0   2 0   4   4
0   0   0   5   5
0   1 0   2   2
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SVD - Complexity
¢ To compute SVD:

l O(nm2) or O(n2m) (whichever is less)

¢ But:
l Less work, if we just want singular values
l or if we want first k singular vectors
l or if the matrix is sparse

¢ Implemented in linear algebra packages like
l LINPACK, Matlab, SPlus, Mathematica ...

3/19/23
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SVD - Conclusions so far
¢ SVD: A= U Σ VT: unique

l U: user-to-concept similarities
l V: movie-to-concept similarities
l Σ : strength of each concept

¢ Dimensionality reduction: 
l keep the few largest singular values 

(80-90% of ‘energy’)
l SVD: picks up linear correlations
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Relation to Eigen-decomposition

¢ SVD gives us:
l A = U Σ VT

¢ Eigen-decomposition:
l S = X L XT

• S is symmetric
• U, V, X are orthonormal (UTU=I),
L, Σ  are diagonal

¢ What is:
l AAT= UΣ VT(UΣ VT)T = UΣ VT(VΣTUT) = UΣΣT UT

l ATA = V ΣT UT (UΣ VT) = V ΣΣT VT

3/19/23
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Relation to Eigen-decomposition

¢ SVD gives us:
l A = U Σ VT

¢ Eigen-decomposition:
l S = X L XT

• S is symmetric
• U, V, X are orthonormal (UTU=I),
L,  Σ are diagonal

¢ What is:
l AAT= UΣ VT(UΣ VT)T = UΣ VT(VΣTUT) = UΣΣT UT

l ATA = V ΣT UT (UΣ VT) = V ΣΣT VT

X L XT So, λi = σi
2

X L XT

Shows how to compute
SVD using eigenvalue

decomposition!
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SVD: Properties

¢ A AT = U Σ2 UT

¢ ATA = V Σ2 VT

¢ (ATA) k = V Σ2k VT

l E.g.: (ATA)2 = V Σ2 VT V Σ2 VT = V Σ4 VT

¢ (ATA) k  ~ v1 σ1
2k v1

T for k>>1
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Case study: How to query?
¢ Q: Find users that like ‘Matrix’
¢ A: Map query into a ‘concept space’ – how?

=
SciFi
Fans

Romance
Fans

x x

M
at

rix
Al

ie
n

Se
re

ni
ty

C
as

ab
la

nc
a

Am
el

ie

1   1   1 0   0
3   3   3 0   0
4   4   4 0   0
5   5   5 0   0
0   2 0   4   4
0   0   0   5   5
0   1 0   2   2

0.13 0.02  -0.01
0.41 0.07  -0.03
0.55 0.09  -0.04
0.68 0.11  -0.05
0.15  -0.59 0.65
0.07  -0.73 -0.67
0.07  -0.29 0.32

12.4 0     0
0       9.5 0
0       0     1.3

0.56   0.59  0.56 0.09    0.09
0.12  -0.02  0.12  -0.69  -0.69
0.40  -0.80 0.40   0.09    0.09
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Case study: How to query?

¢ Q: Find users that like ‘Matrix’
¢ A: Map query into a ‘concept space’ – how?

3/19/23

5 0 0 0 0 
 

q =

Matrix
Al

ie
n

v1

q

v2

M
at

rix
Al

ie
n

Se
re

ni
ty

C
as

ab
la

nc
a

Am
el

ie

Project into concept space:
Inner product  with each 
‘concept’ vector vi
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Case study: How to query?
¢ Q: Find users that like ‘Matrix’
¢ A: Map query into a ‘concept space’ – how?

v1

q

q*v1
5 0 0 0 0 

 

M
at

rix
Al

ie
n

Se
re

ni
ty

C
as

ab
la

nc
a

Am
el

ie

v2

Matrix
Al

ie
n

q =

Project into concept space:
Inner product  with each 
‘concept’ vector vi
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Case study: How to query?

Compactly, we have:
qconcept = q V

E.g.:

3/19/23

movie-to-concept
similarities (V)

=

SciFi-concept

5 0 0 0 0 
 

M
at

rix
Al
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n

Se
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a

Am
el

ie

q =

0.56   0.12
0.59  -0.02
0.56   0.12
0.09  -0.69
0.09  -0.69

x 2.8      0.6
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Case study: How to query?

¢ How would the user d that rated 
(‘Alien’, ‘Serenity’) be handled?
dconcept = d V

E.g.:

movie-to-concept
similarities (V)

=

SciFi-concept

0 4 5 0 0 
 

M
at

rix
Al

ie
n

Se
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a

Am
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ie

q =

0.56   0.12
0.59  -0.02
0.56   0.12
0.09  -0.69
0.09  -0.69

x 5.2      0.4
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Case study: How to query?
¢ Observation: User d that rated (‘Alien’, ‘Serenity’) 

will be similar to user q that 
rated (‘Matrix’), although d and q have 
zero ratings in common!

0 4 5 0 0 
 

 

d=

SciFi-concept

5 0 0 0 0 
 

 

q=

M
at

rix
Al

ie
n

Se
re

ni
ty

C
as

ab
la

nc
a

Am
el

ie

Zero ratings in common Similarity ≠ 0

5.2      0.4

2.8      0.6
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Principal Component Analysis 
(PCA) 

3/19/23

An Application of SVD
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Recall:  The 2nd Interpretation of SVD

¢ SVD gives ‘best’ axis 
to project on:
l ‘best’ = min sum of 

squares of projection 
errors

¢ In other words, 
minimum 
reconstruction error

3/19/23

v1

first right 
singular vector

Movie 1’s  rating 
by the user

M
ov

ie
 2

’s
  r

at
in

g 
by

 th
e 

us
er

Each user (a data point) 
is characterized by the 
ratings he/she gave to a 
set of Movies

v1



DIM RED   64

Philosophy of PCA
¢ PCA is concerned with explaining the variance/ 

covariance structure of a set of variables (features) 
through a few linear combinations.

¢ We typically have a m x n input data matrix, A:
l Each row of A corresponds to one n-dim data-point
l i.e. m observed data-points, each data-point consists of n

potentially correlated variables (features) x1,x2,..xn 

¢ PCA looks for a transformation of the n xi’s into d new 
variables (features) zi’s that are uncorrelated.

¢ Objective: To replace the old variables (features):  
x1,x2,…xn with a few new features: zi’s without losing
much information. 
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Geometric picture of principal components (PCs)

A sample of m observations in the old 2-D space 

Goal:  To account for the variation in a sample
in as few variables as possible, to some accuracy

Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.ppt
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Geometric picture of principal components (PCs)

• The 1st PC is derived from a minimum distance fit to a line in      
space ; direction of this line is that of the 1st Principal Vector , say v1

• The 2nd PC is derived from a minimum distance fit to another 
line  in the plane perpendicular (orthogonal) to the 1st Principal 
vector 

Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.ppt
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PCA: General methodology

From n original variables (features): x1, x2,...,xn:
Produce d new variables (features): z1,z2,...,zd:
z1 = v11x1 + v12x2 + ... + v1nxn

z2 = v21x1 + v22x2 + ... + v2nxn

...
zd = vd1x1 + vd2x2 + ... + vdnxn

such that:

zi's are uncorrelated (orthogonal) to each other
z1 explains as much as possible of original variance in data set
z2 explains as much as possible of remaining variance
etc.

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt

zi's are the
Principal 

Components
N.B: Each of these 
new variables is a 

LINEAR 
combination of the 
old variables xi’s



DIM RED   68

68

Principal Components Analysis

4.0 4.5 5.0 5.5 6.0
2

3

4

5

z 1z 2

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt x1

x2
v2 v1
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ai

Note that: 
zi,1 = ai ∙v1
zi,2 = ai ∙v2

v1v2

ai
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Terminologies for PCA
¢ The column vector v1= {v11,v12,...,v1n}’ , sometimes referred as the 

1st Principal Vector, defines the direction of the axis for the 1st new 
variable, z1 , which is the actual  1st Principal Component (PC)
l The v1j’s are called the coefficients (or loadings) of 1st  PC 
l It can be shown that the entire vector: {v11,v12,...,v1n} is the 1st 

Eigenvector, i.e., the one corresponds to the largest eigenvalue of 
the correlation/covariance matrix (which captures the correlation
between different old features) of the original  input data set

Similarly, 
¢ The column vector vd= {vd1,vd2,...,vdn}’ defines the direction of the 

axis for the d-th new (derived) variable, zd , i.e. the d-th PC
¢ The vdj’s are called the coefficients (or loadings) of  d-th PC 
¢ {vd1,vd2,...,vdn} is the d-th Eigenvector, i.e. the one corresponds to 

the d-th largest eigenvalue of the correlation/covariance matrix of the 
input data set…

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt
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How to determine v1  ?
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Determine v1 
by Minimizing Total “Reconstruction Error”

¢ SVD gives ‘best’ 
axis to project on:
l ‘Best’ = min sum 

of squares of 
projection errors

l In other words, 
minimizing total 
reconstruction error

v1

first right 
singular vector

Movie 1’s  rating 
by the user

M
ov

ie
 2

’s
  r

at
in

g 
by

 th
e 

us
er

Each user (a data point) 
is characterized by the 
ratings he/she gave to a 
set of Movies

v1
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¢ Find the ‘Best’ axis (v1) to project on:
l ‘Best’ = minimize sum of squares of projection errors

= minimize sum of squares of “distance” for ALL xi’s
= maximize sum of squares of “projection” for ALL xi’s

3/19/23

Determine v1 
by Minimizing Total “Reconstruction Error”



DIM RED   74

74

How to determine v1  ? (cont’d)
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Good Better
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How to determine the directions of
the 2nd , 3rd, …k-th new axes ?
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In conclusion, we have found that:

¢ The direction of the 1st PC, z1 is given by the 
eigenvector v1 which corresponds to the 
largest eigenvalue of the covariance matrix 
ATA.

¢ The second vector that is orthogonal 
(uncorrelated) to the first is the one that has 
the second highest variance which comes to 
be the eigenvector corresponding to the 
second largest eigenvalue of ATA.

¢ And so on …
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Relation to between 
SVD and PCA (Eigen-decomposition)

¢ SVD gives us:
l A = U Σ VT

• For any matrix A

¢ Eigen-decomposition:
l S = X L XT

• For any symmetric matrix S
¢ U, V, X are orthonormal (UTU=I, etc),
¢ L,  Σ are diagonal
¢ What is:

l AAT= UΣ VT(UΣ VT)T = UΣ VT(VΣTUT) = UΣΣT UT

l ATA = V ΣT UT (UΣ VT) = V ΣΣT VT

ATA= S=X L XT Also: λi = σi
2

X L XT

Show how to 
perform PCA 
(or eigenvalue

decomposition) 
using SVD 
in practice !
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When is SVD = PCA?

¢ Centered data

x

y

x’
y’
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When is SVD different from PCA?

x

y
x’

y’

y’’

x’’

Translation is not a linear operation, as it moves the origin !

PCA

SVD
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Additional notes for PCA
¢ PCA is sensitive to scale

¢ PCA should be applied on data that have approximately
the same scale in each variable

¢ Also remember to ‘center’ each of the attributes, i.e. 
substracted by the sample mean, to get the covariance 
matrix before doing eigenvalue decomposition (or SVD).
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How many PCAs to keep
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Example: PCA on Faces: “Eigenfaces”

Average
face 1st principal vector (aka eigenface)

Other
principal
vectors
(eigenfaces)

For all except average,
“gray” = 0,

“white” > 0,
“black” < 0

http://En.wikipedia.org/wiki/Eigenface
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Computational Trick for 
PCA with Eigenfaces

Each 100x100-pixel sample face is a 10,000 dimension data point,  
represented as a 1x10,000 row vector.
Stack 300 sample faces together to form a 300x10,000 input data matrix A
⇒ Size of covariance matrix AT A =10Kx10K ; too big for eigen-decomposition
Instead, do eigen-decomposition on the 300x300  AAT   to get:   
λi  and ui  s.t.    AATui = λiui

Pre-multiply both sides by AT : 
AT AATui = ATλiui = λiA

Tui

⇒ AT A ATui( ) = λi A
Tui( )

⇒  vi  = A
Tui  is the eigenvector of the 10,000x10,000 ATA

⇒ We have solved eigen-decomposition for the big ATA 
     by solving that for the 300x300 AAT  !  
**vi  is a 10000 x 1 vector, having the same dimension of an input data point (a face)
⇒  vi  is (and can be displayed as) the i - th eigenface  ! 
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CUR Decomposition

3/19/23
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SVD: Strength and Weakness

+ Optimal low-rank approximation
in terms of Frobenius norm

- Interpretability problem:
l A singular vector specifies a linear 

combination of all input columns or rows

- Lack of sparsity:
l Singular vectors are dense!

=

U

Σ
VT
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CUR Decomposition
¢ Goal: Express A as a product of matrices C,U,R

Make ǁA-C·U·RǁF small

¢ “Constraints” on C and R:

A C U R

Frobenius norm:

ǁXǁF= Σij Xij
2
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CUR Decomposition
¢ Goal: Express A as a product of matrices C,U,R

Make ǁA-C·U·RǁF small

¢ “Constraints” on C and R:

3/19/23

Pseudo-inverse of 
the intersection of C and R

A C U R

Frobenius norm:

ǁXǁF= Σij Xij
2
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CUR: How it Works

¢ Sampling columns (similarly for rows):

3/19/23

Note this is a randomized algorithm, same 
column can be sampled more than once

Total power = c * E[ Cd(:, i) 2 ] = c * E [ A2(:,j) / [ c P(j) ]] = c*    { A2(:,j) P(j)/ c P(j) } =    A2(:, j) 
i.e., same as the total power of the original matrix A !! j=1

n

∑
j=1

n

∑
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C

R          

U = W+

W

Computing U

¢ Let W be the “intersection” of sampled 
columns C and rows R
l Let SVD of W = X Z YT

¢ Then: U = W+ = Y Z+ XT

l Z+: reciprocals of non-zero 
singular values: Z+

ii =1/ Zii

l W+ is the “pseudoinverse”

A ≈

Why pseudoinverse works?
W = X Z YT

then W-1 =( YT) -1Z-1 X-1 

= YZ-1 XT

Due to orthonomality
X-1=XT and Y-1=YT

Since Z is diagonal Z-1 = 1/Zii
Thus, if W is nonsingular, 
pseudoinverse is the true inverse

W

R

C
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CUR: Pros & Cons
+ Easy interpretation

• Since the basis vectors are actual 
columns and rows

+ Sparse basis
• Since the basis vectors are actual 

columns and rows
- Duplicate columns and rows

• Columns of large norms will be sampled many times

Singular vector
Actual column
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Solution

¢ If we want to get rid of the duplicates:
l Throw them away
l Scale (multiply) the columns/rows by the 

square root of the number of duplicates

3/19/23

A
Cd

Rd

Cs

Rs

Construct a 
small U
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SVD vs. CUR

SVD: A = U Σ VT
Huge but sparse Big and dense

CUR: A = C U R
Huge but sparse Big but sparse

dense but small

sparse and small
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Simple Experiment
¢ DBLP bibliographic data

l Author-to-conference big sparse matrix
l Aij: Number of papers published by author i at 

conference j
l 428K authors (rows), 3659 conferences (columns)

• Very sparse

¢ Want to reduce dimensionality
l How much time does it take?
l What is the reconstruction error?
l How much space do we need?
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Results: DBLP- big sparse matrix

¢ Accuracy:
l 1 – relative sum squared errors

¢ Space ratio: 
l #output matrix entries / #input matrix entries

¢ CPU time

3/19/23

SVD
CUR
CUR no duplicates

SVD
CUR
CUR no dup

Sun, Faloutsos: Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM ’07.
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What about linearity assumption?

¢ SVD is limited to linear projections:
l Lower-dimensional linear projection 

that preserves Euclidean distances

¢ Non-linear methods: Isomap
l Data lies on a nonlinear low-dim curve aka manifold

• Use the distance as measured along the manifold
l How?

• Build adjacency graph
• Geodesic distance is 

graph distance
• SVD/PCA the graph 

pairwise distance matrix
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Further Reading for CUR
¢ Frieze A, Kannan R, Vempala S (2004) Fast Monte-Carlo algorithms for finding low-

rank approximations. J ACM 51(6):1025–1041. 

¢ Drineas et al., Fast Monte Carlo Algorithms for Matrices III: Computing a 
Compressed Approximate Matrix Decomposition, SIAM Journal on Computing, 2006.

¢ J. Sun, Y. Xie,  H. Zhang,  C. Faloutsos: Less is More: Compact Matrix 
Decomposition for Large Sparse Graphs, SDM 2007

¢ Intra- and interpopulation genotype reconstruction from tagging SNPs, P. Paschou, 
M. W. Mahoney, A. Javed, J. R. Kidd, A. J. Pakstis, S. Gu, K. K. Kidd, and P. 
Drineas, Genome Research, 17(1), 96-107 (2007)

¢ Tensor-CUR Decompositions For Tensor-Based Data, M. W. Mahoney, M. Maggioni, 
and P. Drineas,  Proc. 12-th Annual SIGKDD, 327-336 (2006)

¢ CUR Matrix Decompositions for Improved Data Analysis, M. W. Mahoney and P. 
Drineas, Proc. Natl. Acad. Sci. USA, 106, 697-702 (2009)

¢ Optimal CUR Matrix Decompositions, C. Boutsidis, D.P. Woodruff,  STOC 2014, 
http://arxiv.org/abs/1405.7910



DIM RED   100

Backup Slides
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Intuition of  CUR
from Frieze A, Kannan R, Vempala S (2004) Fast Monte-Carlo algorithms for 

finding low-rank approximations. J ACM 51(6):1025–1041. 
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State of the Art work on Optimal CUR
http://mmds-data.org/presentations/woodruff_mmds14.pdf
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Prior Art on CUR
http://mmds-data.org/presentations/woodruff_mmds14.pdf
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Prior Open Problems on Optimal CUR
http://mmds-data.org/presentations/woodruff_mmds14.pdf
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Summary of recent Results on Optimal CUR
http://mmds-data.org/presentations/woodruff_mmds14.pdf



DIM RED   106

Lower Bound Results on Optimal CUR
http://mmds-data.org/presentations/woodruff_mmds14.pdf
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Input-sparsity-time CUR
http://mmds-data.org/presentations/woodruff_mmds14.pdf
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Deterministic CUR
http://mmds-data.org/presentations/woodruff_mmds14.pdf


